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Pollution of the environment by industrial household waste (food and other waste and

leftovers) and by chemicals is constantly increasing, altering our biotope. Recycling and

reclaiming this waste is one way of reducing its harmful impact on our planet. Various food

wastes can be promising alternatives, used as a carbon source and as a support for

microorganisms to produce value-added metabolites, namely microbial enzymes. The latter

are key ecological alternatives to standard chemicals.

Fungal enzymes have found their way into a variety of industries, and are one of the key

alternatives most in demand.

Consequently, any substantial reduction in the cost of enzyme production will provide a

positive stimulus for enzyme commercialization. Proteases are one of the largest groups of

industrial enzymes, accounting for almost 60% of total enzyme sales (Savitha et al., 2011).

Proteases are mainly used in dry cleaning, detergents, meat processing, cheese making,

silver recovery from photographic film, digestive product production, and some medical

treatments of inflammation and virulent wounds (Paranthaman et al., 2009). In addition, they

are used in silk degumming, the composition of ointments and soft-gel medicinal formulas

helps remove silver from used X-ray film, waste management in the poultry and leather

industries, and as a detergent additive to remove protein-based stains (Mukhtar, 2016a). They

are also used to improve the digestibility and sensory quality of foods, as well as providing

health benefits by reducing allergenic compounds (Tavano, 2013) and modifying dough

properties in baking (Owen, 2011).

Solid substrate fermentation (SSF) was chosen for the present research because it has

been reported to be much more productive than submerged fermentation (Paranthaman et al.,

2009). From an economic point of view, SSF offers many advantages, including higher

volumetric productivity, the use of simpler machinery, the use of inexpensive substrates,

simpler downstream processing, and lower energy requirements compared with submerged

fermentation (Arora et al., 2018).

As far as the enzyme market is concerned, Algeria lags far behind in terms of enzyme

use and production, relying mainly on imports rather than local production, resulting in

significant economic losses that could easily be avoided.

When it comes to the enzyme market Algeria lags well behind in terms of both enzyme

employment and production, depending mainly on imports rather than local production which

results in significant economic losses that could be easily avoided.
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And so, building on precedent research results we chose the locally available strain

Clavispora lusitaniae taking advantage of one of the most wasted resources of the country

bread and tomatoes leftovers as a substrate, and proceeded with solid-state fermentation to

produce protease, partially purified it, and then test it out to investigate its industrial potential.

To advocate for a positive change, we wrote this study with the following objectives in mind:

o Producing protease from a locally available strain Clavispora lusitaniae

o Providing a new opportunity to recycle wasted bread and tomatoes

o Introducing a few prospective protease industrial applications

o Further push the development of the enzyme market in Algeria

The study was conducted in two main parts.

The first part includes a literature review on the main elements of the study, from

general information on the yeast Clavispora lusitaniae and the enzyme protease to their

contribution to the biotechnology industry.

The second part is devoted to the methods used to achieve the targeted objectives, the

results obtained, and its discussion, all coming to an end with a general conclusion.
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Chapter1 Yeast

1. Generalities
Yeasts are eukaryotic, unicellular micro-fungi. First observed by A. Van Leewenhoek in

1680. The term "yeast" in English and many other languages takes the meanings of "foam"

and "to rise" directly reflecting its role as a fermentation agent (Kurtzman et al., 2011) such

microorganisms have been used throughout human history in the fabrication of bread, dairy

products, wine, and other alcoholic beverages (Labrecque, 2003). Nowadays, Yeasts are

regarded as a model organism due to its low food requirements and rapid development and so

in addition to its traditional usages it's employed to produce metabolites (lipids, organic acids,

polysaccharides, vitamins) (Labrecque, 2003)and especially commercial enzymes such as

amylase, cellulase, lactase and protease (Meyer et al., 1988; Scriban, 1999)

2. Morphology and structure
Yeasts are typically white (rarely pink or red), spherical or ovoid in shape, with cells

ranging in size from 5 to 20µ.(Barnett et al., 2000; Guiraud, 2003). These aspects and

dimensions are usually determined by the species type, culture conditions, and cell

age.(Scherr and Weaver, 1953)

Figure 1: A diagram of a yeast cell structure (Speers and Forbes, 2015)
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3. Habitat
Yeasts are ubiquitous microorganisms that are compatible with a variety of

environments including: air (Belhomsa et al., 2017; Péter et al., 2017), soil (Merabti, 2006),

fresh and deep water (Droop and Wood, 1968; Meyer et al., 1988; Scriban, 1999; Stevenson

et al., 1973). Some yeasts have been found in the extremely cold polar region (Baeza et al.,

2019). Others live mainly on plants rich in sugars, especially fruits (Tsegaye and Tefera, 2018)

like grapes (Oteng-Gyang, 1984), mango (Moussa and Andrianarisoa, 2015). Also, food

products such as yogurt (Lopandic et al., 2006), cheese (Binetti et al., 2013), honey (Jiang et

al., 2018).

4. Reproduction
Depending on the environmental condition yeasts can go through two types of

reproduction

4.1 Asexual reproduction
The majority of yeasts reproduce through budding (Figure 2). A bud is a tiny protrusion

that extends from the parent cell and produces a new individual when it reaches maturity.

Figure 2: A diagram of a budding yeast cell (Neumann and Hediger, 2006)

The other way, though not as common, is through binary fission (Figure 3), in which the
parent cell gets elongated and its nucleus divides and gradually separates near the middle into
two daughter cells. (Larpent, 1991)

Figure 3: A diagram of a yeast in binary fission. (Mehak, n.d.)

4.2 Sexual reproduction
Different-gender haploid yeast cells fuse to form a diploid cell that goes through mitosis

to produce a population of diploid yeast cells (Figure 4).
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In the case of adverse conditions, diploid yeast cells produce haploid endospores, which

mature into haploid yeast cells after germination (François et al., 2001).

Figure 4: Yeast reproduction diagram (Lakna, n.d.)

5. Nutritional needs and physico-chemical requirements
5.1 Nutritional needs
5.1.1 Carbon sources

For the well-development of the yeast, carbon is one of the essential requirements,

accounting for 50% of its total dry weight (Toumi, 2018). It is used as both a source of energy

and a building component for its cellular constituents.(Walker, 2009)

For yeasts, monosaccharides such as glucose, fructose, and mannose are the most

effective sources(Pol, 1997); however, saccharides, polyols, alcohols (ethanol, methanol, and

glycerol), polysaccharides (soluble starch, pectin), and organic acids (lactic acid, citric acid,

tartaric acid, malic acid, succinic acid, and others) may be utilized as well by yeast. (Brou and

Paul, 2018; Dakhmouche, 2016; Moussa and Andrianarisoa, 2015; Ponomarova et al., 2017)

5.1.2 Nitrogen sources
Yeast uses nitrogen to stimulate its growth by facilitating the synthesis of proteins,

nucleic acids, and vitamins(Bourgeois and Leveau, 1980; Toumi, 2018). It can draw nitrogen

from a variety of sources, be they organic (such as peptone, yeast extract, glutamine, aspartic

acid, purines, and pyrimidine bases) (Deak, 2006; Gobert et al., 2017; Walker, 2009) or

inorganic such as ammonium salts (Brou and Paul, 2018), nitrates (Bourgeois and Larpent,

1996).

5.1.3 Mineral elements and growth factors
Mineral elements and growth factors are very important for the yeast metabolism and

overall growth on the condition of low concentration(Larpent-Gourgaud and Sanglier, 1992),
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when said concentration goes beyond a certain level, it leads to the denaturation of enzymes

and a disturbance of cell morphology and physiology (Blom et al., 2000).

Mineral elements that contain K+, Na+, P2+, Mg2+ ...etc, are components of

metalloenzymes involved in metabolic pathways (Brou and Paul, 2018) while growth factors

such as vitamins (biotin, pantothenic acid, myoinositol, nicotinic acid and thiamine) are

involved in the structure of coenzymes of the yeast metabolic enzymes, they therefore act on

cellular activity and division (Brou and Paul, 2018).

5.2 Physico-chemical requirements

5.2.1 Temperature
Due to the large influence of temperature on biologic reactions, each organism has an

optimal growth temperature, and yeasts are no different. Taking into account its diversity and

various habitats, pinpointing a strict temperature interval that suits all is impossible. In general,

yeast's culture temperature ranges between 35 and 45 °C to ensure adequate growth (Buzzini

et al., 2018), for thermophilic yeasts. Minimum growth can be between 20 °C and 50 °C

(Liszkowska and Berlowska, 2021). Psychrophilic yeasts, on the other hand, reach their

maximum growth at temperatures between 5 °C and 20 °C 4, and around 0 and 50 °C for

mesophilic yeasts development. (Dakhmouche, 2016).

5.2.2 pH
Yeasts can tolerate pH levels ranging from 2.4 to 8.6. Their optimum growth is

observed at pH levels ranging from 4 to 6.5. (Chniti, 2015).

5.2.3 Oxygen
All yeasts grow in the presence of oxygen; there are no strict anaerobes; some are strict

aerobes, while others are facultative aerobes. (Bourgeois and Leveau, 1980).

5.2.4 Osmotic pressure and water activity
The effects of osmotic pressure on the development of the organism vary from one yeast

to another. Most yeasts cannot grow in water activity of less than 0.90, while some can

tolerate higher osmotic pressures corresponding to a water activity of 0.60, but they have a

slow metabolism. These yeasts are referred to as "xerotolerant" because they can produce

osmoprotectants (betaine and glycerol).(Bourgeois and Leveau, 1980; Larpent-Gourgaud and

Sanglier, 1992).
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6. Clavispora lusitaniae
Clavispora lusitaniae is a yeast of irregular shape that tend to range from round to

elongated reproduce by multilateral budding and has no known ecological niche It can be

isolated from a variety of substrates, including soils, waters, plants, and the gastrointestinal

tracts of a wide range of animals, including birds, mammals, and humans.

C. lusitaniae can be pathogenic for the immunocompromised and newborn hosts and is
responsible for approximately 19.3% of fungemia cases in cancer patients, and about 1% of

invasive candidiasis, particularly in pediatric and hematology-oncology patients.

6.1 Taxonomy
Kingdom: Fungi

Subkingdom: Dikarya

Phylum: Ascomycota

Subphylum: Saccharomycotina
Class: Saccharomycetes
Order: Saccharomycetales

Family: Metschnikowiaceae
Genus: Clavispora

Species: lusitaniae (Butler et al., 2009)
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Chapter2 Protease

1. Generalities
Proteases, also known as proteinases or peptidases, are very complex enzyme groups

produced extracellularly or intracellularly and classified under the hydrolases class (EC

3.4.21–24.x).(Kumar et al., 2008a; Qureshi et al., 2011).

As the name implies, they hydrolyze proteins at very specific sites by splitting the

peptide bond between two amino acids in a peptide chain. (Kumar et al., 2008b).

They are involved in many biological processes, including metabolism regulation, gene

expression, and the hydrolysis of large proteins into smaller molecules for transport and

metabolism (Rao et al., 1998) .

They are currently regarded as the most important commercial enzymes, accounting for

more than 65% of the global enzyme market. (Ibrahim et al., 2015)

2. Classification
proteases are classified according to several major criteria based on cellular localization,

the length of the polypeptide chain, the nature of the catalytic site, and according to the

optimum pH activity.

2.1 According to cell location
Proteases are divided into two groups based on their location within the cell:

intracellular and extracellular proteases, with the latter being more intriguing for industrial

applications because they are easier to extract. (Drouin, 2005; Rao et al., 1998)

2.2 According to the length of the polypeptide chain
This classification is based on the protein's final form after protease action, which

results in two types: those that divide the protein molecule into polypeptide fragments and

those that hydrolyze the polypeptides and transform them into free amino acids. (Colwell,

2012; Frazier and Westhoff, 1988).

2.3 According to the catalytic site on the substrate

Proteases are classified into two main groups based on action site: endopeptidases and

exopeptidases, both are further subdivided into subclasses (Rao et al., 1998) (Figure 5).
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Endopeptidases: (break the covalent bond inside the chain further from the termini). They

are very little used in industry.

Exopeptidases: (break at the NH₂ and COOH ends of the targeted protein) and are the

most used in industry(López-Otín and Bond, 2008)

Figure 5: Classification of protease based on their action at and away from the termini.

(Fleuri et al., 2022)

2.4 According to the optimal pH of the activity
Proteolytic enzymes are classified into three groups according to their optimum pH: acidic,

neutral and alkaline (Razzaq et al., 2019) (Table 1).

The alkaline protease producers are distributed in water, soil, and highly alkaline conditions

between 9 and 11 while the optimum pH of acidic proteases is 3–4 with a molecular weight of

30–45 kDa as for neutral proteases they are active at a neutral or weakly acidic or weakly

alkaline pH. Mostly neutral proteases belong to the genus Bacillus and with a relatively low
thermotolerance ranging from pH 5 to 8.
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Table 1: A comparison of different proteases

Type of

proteases

pH

range
Uses of proteases Classification Sources References

Alkaline 9–11
Detergent and leather

industry

Serine proteases,

subtilisin

Carlsberg and

subtilisin novo

Mostly produced by

bacterial species,

such as A.

salinivibrio sp. strain

AF-2004, marine

shipworms,

Cryptococcus aureus,

mushrooms, Bacillus

sp.

(Dodia et al.,

2008; Miyaji et al.,

2006; Patil and

Chaudhari, 2009;

Simkhada et al.,

2010; Soroor et

al., 2009;

Vadlamani and

Parcha, 2011)

Acidic 3.8–5.6

Soy sauce, protein

hydrolysate, digestive

aids and in production

of seasoning material,

clearing beer and fruit

juice, improving

texture of flour paste

and tendering the

fibril muscle

Aspartic

proteases, pepsin

(A1), retropepsin

(A2) and enzymes

from Para

retroviruses (A3)

Mostly produced by

fungal species, such

as A. niger, A.

oryzae, A. awamori,

A. fumigatus, and A.

saitoi.

(Pushpam et al.,

2011; Sielecki et

al., 1991; Steele et

al., 1992; Zhang et

al., 2010)

Neutral 5–8
Food industry,

brewing industry

Neutrase,

thermolysin
Genus Bacillus

(Sodek and

Hofmann, 1970)

3. Protease sources
Because proteases serve vital physiological functions in several biological processes,

they are found in all living beings, whether animals, plants, or microorganisms.(Raimi et al.,

2010).

3.1 Animal proteases
The pancreas synthesizes a major portion of animal proteases in the form of a precursor

that can be activated autocatalytically under well-defined conditions.(Lakba, 2015).

Animal-derived proteases, such as trypsin and chymotrypsin, are employed in food

(rennet) and medicine. (Rao et al., 1998)
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3.2 Plant proteases
Many studies have been conducted on plants in attempt to isolate proteolytic enzymes.

Several factors influence plant-based enzyme production, including the availability of land for

cultivation and the suitability of climatic conditions for growth. Furthermore, the production

of proteases from plants is time-consuming.(Rao et al., 1998).

Plant proteases isolated from papaya (Carica papaya), fig tree (Ficus glabrata), pineapple

(Ananas comosus), and melon sarcocarp (Cucumus melo) are especially well-known. They
are most commonly used in the food and pharmaceutical industries.(Mahajan and Badgujar,

2010).

3.3 Microbial proteases
Produced by a wide variety of bacteria, molds, and yeasts proteases of microbial origin

offer several advantages over those of animal or plant origin, including high growth rates

leading to short fermentation times and their ability to secrete proteins into the extracellular

environment.(Devi, 2008; Dos Santos Aguilar and Sato, 2018)

3.3.1 Bacterial proteases

Proteases derived from bacterial strains are widely used in the biotechnology industry

for a variety of applications. One of the most commonly used strains is Bacillus sp produces
subtilase extracellularly into the environment, facilitating its purification its stability

(Loudjani, 2016; Owen, 2011)

Other proteases from different bacterial strains, such as Pseudomonas, Streptomyces,
Enterococcus, Listeria, Thermus, Oenococcus, Chrysobacterium, and Microbacterium, are

also available in the biocatalysis market.(Anisha et al., 2008; Mahajan and Badgujar, 2010)

3.3.2 Molds and fungal proteases

Aspergillus, Penicillium, Trichoderma, Mucor, Rhizopus, Geotrichum, Fusarium,
Rhizomucor, Endothia, and other fungi and molds are utilized in the manufacturing of

industrial protease. They have the benefit of isolating mycelium by simple filtration and can

be easily manufactured through a solid-state fermentation technique.(Frazier and Westhoff,

1988; Jisha et al., 2013)

The proteases produced are employed in baking, in the food and feed industry, in

laundry detergents, in the tannery industry and in the pharmaceutical industry (Ul-Haq and

Mukhtar, 2009)
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3.3.3 Yeast proteases

Yeasts combine a microorganism's ease of genetic manipulation and fermentation with

the ability to produce and change foreign proteins in accordance with a general eukaryotic

scheme. Their quick growth and microbiological safety have a significant impact, particularly

in large-scale industrial protein synthesis. As a result, various yeast species, including

Saccharomyces, Rhodotorula, Candida, and Debaryomyces, are used in the manufacture of

proteolytic enzymes.(Boiron and Périlleux, 1996; Idiris et al., 2010).
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Chapter3 Production

1. Proteases producing microorganisms

Protease can be obtained from almost any living organism. For industrial production,

microorganisms such as bacteria, fungi and yeasts are generally used for their ease of

cultivation, low cost and high yield on a large scale, in the presence of the appropriate

favorable conditions (Rao et al., 1998).

1.1 Conditions effect on proteases production
Microbial protease production, in general, is influenced by several variety of conditions

as culture mediums, temperature and pH specific for each species.

1.1.1 Protease producing yeasts

The rapid growth and high-density fermentation of yeast in a chemically defined

medium have a significant impact, especially in the industrial production of proteins (Porro et

al., 2005).

This has led to an expansion of studies on improving protein production using yeast as

cell factories, and several therapeutic proteins are currently being produced using yeast (Rader,

2008; Schmidt, 2004).

Despite reports regarding yeast proteases, relatively little is known about the properties

of extracellular proteases. Therefore, the protease properties of some yeast species were

studied according to medium composition, pH, and temperature (Kim, 2019a). (Table 2)

Table 2: Growing conditions of different protease producing yeasts

Strain pH T Substrate Reference

Citeromyces matritensis 5 30 Sodium Casein

and glucose.

(Rodarte et al.,

2011)

Aureobasidium pullulans 9 45 — (Ma et al.,

2007a)

Pichia anomala CO-1 7 30 — (Kim, 2019b)
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Candida humicola 1-5 37 — (Ray et al.,

1992)

1.1.2 Protease producing bacteria

The majority of neutral and alkaline commercial proteases are produced by the Bacillus
genus. Bacterial neutral proteases are active in a narrow pH range (pH 5 to 8) and have a

relatively low heat tolerance. Whereas alkaline bacterial proteases are characterized by their

higher activity at an alkaline pH, for example, pH 10, and their broad substrate specificity

(Rao et al., 1998). (Table3 )

Table 3: Growing conditions of different protease producing bacteria.

Strain pH T°C Substrat Reference

Bacillus subtilis 5-8 25 Feather culture medium (Suh and Lee, 2001)

Chryseobacterium sp. 8 30 Chicken feathers (Riffel et al., 2003)

Bacillus pumilus
keratinase

8 37 Chicken feathers (El-Refai et al.,

2005)

Streptomyces
thermoviolaceus

8 55 Muscle, collagen, hair, nail,

feathers.

(Chitte et al., 1999)

Thermoanaerobacter
keratinophilus

8 85 Anaerobic complex medium

with chicken feathers, merino

wool, or human hair

(Sabine and

Garabed, 2001)

B. subtilis 8 50 Casein. (Yang et al., 2000)

1.1.3 Proteases producing fungi
Fungi produce a wider variety of enzymes than bacteria. For example, Aspergillus

oryzae produces acid, neutral, and alkaline proteases. The fungal proteases are active over a

wide pH range (pH 4 to 11) and exhibit broad substrate specificity. Fungal enzymes can be

conveniently produced in a solid-state fermentation process. Fungal acid proteases have an

optimal pH between 4 and 4.5 and are stable between pH 2.5 and 6.0. Fungal-neutral

proteases are metalloproteases that are active at pH 7.0. (Rao et al., 1998) (Table 4)
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Table 4: Growing conditions of different protease producing fungi.

Strain Fermentation pH T Total/specific

activity (U)

Substrat Reference

Cordyceps
militaris

SmF 8.5 -

12

25 818.7 Colloidal

chitin.

(Hattori et

al., 2005; Jin

et al., 2021;

Kumar das,

2010)

Thermomyces
lanuginosus

SmF 5 70 12.8 Casein,glucose,

yeast extract.

(Li and

Yang, 1997;

Pathak and

Rathod,

2018; Zou et

al., 2020)

Aspergillus
oryzae

IAM2704

SmF 7 30 1550 Casein,

glucose.

(Jin et al.,

2021;

Katayama et

al., 2016;

Ogawa et

al., 1995)

Aspergillus
oryzae
MTCC 5341

SSF 3-4 55 43.658 Wheat bran. (Jin et al.,

2021;

Katayama et

al., 2016;

Vishwanatha

et al., 2009)

Aspergillus
oryzae NCIM
649

SSF 7 36 6301 Wheat bran,

soy protein.

(Agrawal et

al., 2005; Jin

et al., 2021;

Katayama et

al., 2016)
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Chapter4 Application

Proteases are playing an important role in industries due to their wide application in

leather and detergent, food and pharmaceutical industries and also in bio-remediation

processes (Ben Rebah and Miled, 2013).

Bacterial proteases are produced in large scale due to their high stability, specificity and

activity under a wide range of physical conditions (Ningthoujam and Kshetri, 2010).

More than 60% of the worldwide production of industrial enzymes are proteolytic

enzymes, Among these 35% is comprised of alkaline proteases (Guangrong et al., 2008),

which are extensively used in a wide range of industries such as food, pharmaceutical,

detergent, cheese making, brewing, photography, baking, meat tenderization ,cosmetics and

leather (Dias et al., 2008; Synowiecki, 2010) (Table 5).

Table 5: Different proteases applications.

Source Protease Application Reference

Stenotrophomonas sp. alkaline

protease

Suitable for detergent and textile

industry

(Irame et

al., 2012)

Serratia marcescens Metallo-

protease

Detergent additive for cleaning

purposes

(Tariq,
2011)

Pseudoalteromonas arctica subtilisin-like

protease

Suitable for cold-active laundry

or dish washing purposes

(Park et al.,

2018)

Pseudoalteromonas sp. serine protease Applicable in low-temperature

food processing

(Wang et

al., 2008)

Pseudoalteromonas sp. serine protease Improves the taste of

refrigerated meat

(He et al.,

2004)

Pseudomonas aeruginosa alkaline

protease

Cold washing detergent enzyme (Hao and

Sun, 2015)

Planococcus sp. serine protease Detergent additive for cold

washing

(Chen et

al., 2018)
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Penicillin nalgiovense alkaline

protease

Suitable for meat ripening

purposes

(Papagianni

and

Sergelidis,

2014)

Pedobacter cryoconitis Metalo-

protease

Bioremediation of wastewater in

cold conditions

(Margesin

et al., 2005)

Flavobacterium limicola Cold-active

protease

Primary mineralization of

organic polymers in freshwater

sediments

(Tamaki et

al., 2003)

Enterococcus faecalis Metalloprotease Improves the stability and

solubility of health foods

(Root-

Gutteridge

and

Chatterjee,

2009)

Chryseobacterium sp. Serine protease Applicable in meat and other

food processing units

(Mageswari

et al., 2017)

Bacillus sp. Metalloprotease Environmentally friendly feed

additive to improve the

production performance of farm

animals

(Park,

2011)

Bacillus sp. Metalloprotease Detergent additive for cold-

washing

(Furhan et
al., 2019)

Arsukibacterium ikkense Cold-active

protease

Applicable in dairy products and

other functional foods

(De Gobba

et al., 2014)

Acinetobacter sp. Serine protease Suitable for detergent

formulations

(Salwan

and

Kasana,

2012)
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1. Food industry
Proteases are employed in the production of wine, bread, cheese, and butter. In the dairy

industry, primarily attacking peptide bonds in cheese. Acid protease is used to produce

ethanol, which can be used as a nutrition source for yeast (naveed et al., 2020).

Certain fungal strains, such as Mucor michei , are employed to manufacture acidic
proteases that can be used to replace animal renin in cheese production.

Alkaline proteases are used in soy sauce and enzymatic reactions that lead to the

production of a high-quality protein called hydrolysates .(Sharma et al., 2019)

Fungal proteases are utilized in the fruit juice and beverage industries to degrade

complicated substances by acting on peptide links between proteins .(Figure 6).

Figure 6: Applications of fungal proteases in the food industry. (Naeem et al., 2022)

1.1 Baking industry
Wheat flour is an important ingredient in baking. It contains gluten, an insoluble protein

that controls the qualities of bread dough.

Endo and exoproteinases from Aspergillus oryzae have been utilized to alter wheat

gluten via restricted proteolysis. Enzymatic treatment of the dough makes it easier to handle,

lowers mixing time, and results in larger loaf volumes.

Bacterial protease are employed to increase the dough's flexibility and strength (Rao et

al., 1998) (Figure 7).
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Figure 7: Protease can boost bakery sector . (Web1).

1.2 Manufacture of soy products
Soybeans are a high-protein food source, Protease have been used to make soy them and

other soy products since ancient times.

Fungal alkaline and neutral protease have an important function in the production of soy

sauce, Soy proteins treated with alcalase at pH 8 give soluble hydrolysates with great

solubility, good protein output, and minimal bitterness. The hydrolysate is utilized in the

production of protein-fortified soft beverages as well as the formulation of dietetic feeds (Rao

et al., 1998) (Figure 8).

Figure 8: Applications of enzymes within soybeans. (Web2).

1.3 Synthesis of aspartame
The food and drug administration has approved using aspartame as a non-calorific

artificial sweetener. Aspartame is a di-peptide comprising L-aspartic acid and the L-
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phenylalanine methyl ester, the sweetness of aspartame is caused by the L configuration of

the two amino acids.

Although proteases are commonly thought of as hydrolytic enzymes, they catalyze the reverse

reaction under certain kinetically regulated conditions. For the enzymatic production of

aspartame, an immobilized preparation of thermolysin from Bacillus thermoprotyolyticus is
utilized. The two biggest industrial producers of aspartame are Toya Soda (Japan) and DSM

(the Netherlands) (Rao et al., 1998) .

2. Protease as therapeutic

2.1 Protease as a New Therapeutic Strategy for Celiac
Celiac disease is an autoimmune digestive disorder that affects the small intestine due to

poor digestion of gluten-based toxic peptides such as gliadin, resulting in gut inflammation

(Figure 9).

When gluten is hydrolyzed by normal digestive enzymes, immunotoxic gliadin peptides

are generated. Gluten processing produces gliadin peptides high in proline and glutamine

residues, and a 33-mer gliadin peptide has been linked to the onset of the inflammatory

cascade in celiac disease (Shan et al., 2002).

Proteases that break down gluten peptides may be employed to treat celiac disease

(Sollid, 2002). As of Lately, several protease-based medicines combined with a gluten-free

diet and a healthy diet plan have effectively treated celiac disease (Green et al., 2015).

Figure 9: Lining of the small intestine (Web3).
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2.2 Protease as a new therapeutic strategy for colorectal cancer
Colorectal cancer is the most common type of cancer and has a high prevalence rate in

developed countries due to an unhealthy diet. Although several drugs have been used to treat

it in recent decades, the disease is still fatal in its advanced stages.

Proteases have been utilized to inhibit tumor formation at the cellular level.

A protease-based therapy for colorectal cancer is a ubiquitin-proteasome system(López-

Otín and Matrisian, 2007). Which is a multiplex protease enzyme system necessary for cell

survival that induces the destruction of misfolded proteins. It is also important in controlling

the turnover of aberrant proteins or short-lived regulatory proteins that are engaged in vital

physiological processes such as cell death and signaling pathways, apoptosis, metastasis, and

cell proliferation (Kwon and Ciechanover, 2017).

To create the ubiquitin linkage, protein substrates are primarily attached to the chain of

the protein ubiquitin in the presence of ubiquitin-activating enzymes or E1, ubiquitin-

conjugating enzymes or E2, and ubiquitin ligases or E3.

The polymerized ubiquitin chain serves as a signal to convey the target proteins to the

proteasome, where they are broken down by proteolysis (Liu et al., 2015).

3. Bioremediation and Waste management
Poultry and leather industry wastes are rich in keratin that is densely packed and

stabilized by hydrogen, hydrophobic interactions and di-sulfide bonds (Steinmann et al.,

2002).

These keratin wastes are degraded by chemical and mechanical hydrolysis which is not

eco-friendly. Enzymatic degradation by using alkaline proteases is better method (Kudrya

and Simonenko, 1994).

Bacillus species is the most widely reported bacterial source of keratinases for feather
degradation. Other reported bacterial sources of keratinases are Pseudomonas sp. MS21,

Microbacterium sp., Chryseobacterium sp. and Streptomyces sp. Fungal keratinases obtained
from Aspergillus oryzae, Chrysosporium indicum, Trichophyton mentagrophytes,

Microsporum sp., Trichophyton sp., Aspergillus terreus, Scopulariopsis sp., Fusarium
oxysporum have also been studied towards the degradation of keratin (Sharma et al., 2010).
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4. Proteases in Silver Recovery
In general, X-ray and photographic films contain 2% silver incorporated in the gelatin

layer. This silver can be recovered using a variety of methods. Formerly employed methods

retrieved silver recovery by burning X-ray films, which causes environmental problems.

The carbon monoxide explosion also increased the risk of respiratory infections in

nearby areas. As a result, traditional silver recovery methods are ineffective, and an urgently

advanced approach is required to reduce environmental and safety concerns (Qamar et al.,

2020).

Alkaline proteases have been used successfully for silver recovery while posing no

environmental risks (Figure 10).

Proteases from the Bacillus species can catalyze the hydrolysis of the gelatin layer with
optimum silver retrieval while avoiding damage from a recyclable polyester base film(Patil,

2012).

Figure 10: X-ray film after enzymatic hydrolysis of gelatin-silver layer. (Lakshmi and

Hemalatha, 2016).

5. Proteases in Silk-Degumming
Sericin, a fibrous protein that surrounds silk fibers and gives them a rough texture,

protects them. To organize the structure of silk fibers, various conventional methods for

removing sericin have been used. (Pierre and Jérome, 2008)

The high-cost machinery required to extract the sericin makes these procedures pricey.

Proteases have been used to degum silk in order to remove sericin while maintaining

fiber structure. Prior to using traditional procedures, alkaline protease produced from Bacillus

sp., RGR-14 is used to degum silk. (Nakpathom et al., 2009).
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6. Detergent industry
Microbial cold-adapted proteases with detergents are more effective during cold

washing than enzyme-free detergents. Moreover, cold-adapted alkaline proteases have

demonstrated excellent stability in commercial surfactants and bleaches (Hao and Sun, 2015).

alkaline proteases from Bacillus cereus, Bacillus pumilus strain CBS, Streptomyces sp.
strain AB1,Bacillus licheniformis, Aspergillus flavus, Aspergillus niger, Bacillus brevis,

Bacillus subtilis AG-1 have exhibited excellent detergent compatibility in the presence of
certain stabilizers such CaCl2 and glycine (Abou-Elela et al., 2011).

Proteases combined with commercial detergents removed proteinous materials from

garments stained with chocolate, tea, blood, egg yolk, grass, and other substances at

considerably lower temperatures than enzyme-free detergents. These qualities make them

detergent additives for the laundry and dishwashing sectors (Sarmiento et al., 2015).

7. Leather Industry
Proteases are essential in the treatment of raw leather in tanneries (Figure 11), Soaking

includes removing blood, feces, and filth from hides as well as making certain structural

modifications. The use of alkaline serine proteases is the most effective leather treatment.

Alkaline proteases are important in the solubilization of albumin and globulin, the opening of

constricted fibrous proteins, and the washing of debris and excess fat during the soaking stage

(Mukhtar, 2016b).

The lime-sulfide procedure is the traditional method for depilation that involves the use

of sodium sulfide and hydrated lime. On the flesh side of the skin, a paste of sodium sulfide

and hydrated lime is applied. The goal of this therapy is to remove hair through mucoid

hydrolysis, collagen fiber swelling, and elastin digestion. This process is now objectionable

worldwide because of the massive release of dangerous chemical compounds (Mukhtar,

2016b).

Proteases, which are usually generated by bacteria and are stable in alkaline

environments, have become increasingly popular for depilation and skin opening.

Enzymatically aided dehairing techniques enhance the leather's surface area and make

washing and dyeing easy. Proteases with a high pH activity can penetrate the skin more easily.

Bacillus subtilis produced proteases with keratinolytic activity that replace sodium sulfide in

dehairing process of leather industry .and microbial proteases have replaced the use of trypsin,

as they are more economical.(Mukhtar, 2016b).
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Figure 11: Enzymatic dehairing in the leather industry. (Zhou et al., 2018).
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1. Production stage
1.1 Yeast strain

The yeast used for the production of the protease is the strain Clavispora lusitaniae CBS

6936 T isolated from potato peels. It is kept in themycotheque of the Enzymatic Engineering

and Application laboratory.

1.2 Reactivation of yeast strain
The reactivation of the yeast is carried out on a new nutrient culture medium YPGA

(Appendix 1) inoculated by the streak method in petri dishes using a Pasteur pipette under

aseptic conditions. The plates are then incubated for 48 hours at 30°C in an incubator (Figure

12).

Figure 12: Tools used in the reactivation of the strain.

1.3 Preparation of the cell suspension
A quantity of YPGA medium is poured into a petri dishes and then seeded with

Clavispora lusitaniae. After incubation for 48 hours at 30°C, a quantity of sterile distilled
water (or physiological water) is added, and the cells are homogenized by manual shaking.

Recover the stock yeast solution to carry out the cell counting and inoculation of the media.

The stock solution is the inoculum and should be kept in the refrigerator

1.4 Cell counting
The number of cells was estimated by counting directly from a drop of the yeast

suspension using a Thomas cell under an optical microscope magnification of (× 40).
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Thomas cell is engraved with a special grid making it possible to count within, each

yeast cell one by one, after determining the number per unit using the following rule it's

possible to estimate the concentration of cells per milliliter.

total cell count =
total cell count × dilution . 103

number of tiles × 0.00025

1.5 Fermentation substrate
the media is based on tomato waste and the remains of the bread; because these

substrates are rich in nutrients necessary for the development of yeasts and also for the

production of enzymes.

The drained tomato waste and the remains of the bread recovered are dried in the open

air (25– 30°C). Then crushed to have into powder (Figure 13).

Figure 13: Erlenmeyers after adding the substrate.

1.6 Fermentation media
Fermentation is carried out in a set of 8 Erlenmeyer flasks of 250ml volume containing a 10g
mixture of two types of waste serving as substrates (5g crushed bread scraps, 5g powdered
tomato peelings). 9.7ml of buffer are added to obtain a moisture content of 96.82%. The
contents of each flask are then carefully mixed using a glass rod.

The Erlenmeyer flasks are capped with carded cotton, covered with aluminum foil. They are
sterilized in an autoclave at 121°C for 20 minutes.

After cooling, the sterilized Erlenmeyer flasks are inoculated with yeast suspension and
incubated at 40°C for 112 hours.
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1.7 Enzyme Extraction
After fermentation, a 25 ml of Tween 80 solution (0.02%) is added on a 2.5 g of the

fermented substrate. The mixture is mixed for 5 minutes and the resulted solution is put in a

conical tube then centrifuged at 10,000 rpm at 4°C for 10 minutes.

The supernatant is then recovered and filtered through a filter paper (Whatman No. 1),

to remove the particles from the substrate.

This process is repeated until the fermented substrate is finished.

The filtrate obtained is a crude enzymatic extract that should be stored in the freezer

until later use.

2. Analytical methods

2.1 Determination of dry matter
The dry matter of the waste is determined by drying a 5 g sample introduced into pre-

dried weighed glass Petri dishes and placed in an oven at 50°C for 48 hours until constant

weight.

DM (%): [(FW-DW) /FW] X 100

DM: Dry matter FW: Fresh weight DW: Dry weigh

2.2 Protein assay

2.2.1 Protein content determination (Lowry et al., 1951)
The principle of protein determination is based on the result of two reactions:

- The first is the Biuret reaction to increase detection sensitivity, where the presence of

copper sulphate in an alkaline medium lead to the formation of a complex between the cupric

ion and the peptide bond in the protein.

- The second is the reaction with the Folin-Ciocalteu reagent which reacts on the

aromatic amino acid tyrosine and tryptophan present in proteins and is reduced to a complex

with a blue-violet color proportional to the quantity of amino acids present in the medium and

which can be detected between 650 and 750 nm.

After dosing, the protein level is calculated by reference to a calibration curve

established from a standard Bovine Serum Albumin (BSA) solution at 500 μg/ml. Each assay

is performed in duplicate (Appendix 2).

2.2.2 Dosage of proteolytic activity
After the hydrolysis of proteins by proteases they release amino acids and simple

peptides, the non-hydrolyzed molecules are precipitated by TCA (ANSON 1938). Tyrosine is
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an aromatic amino acid found in all proteins; it is used as standard for colorimetric assay of

protease activity using folin reagent. The latter reacts with tyrosine and tryptophan to give a

blue color. (The protocol is described in appendix 2).

The activity is calculated by reference to a calibration curve established using tyrosine

as a standard (appendix2).

One unit (U) of protease is the equivalent of 1 µg of tyrosine released over 1 h of time

per 1 ml of an enzyme solution.

2.3 Partial purification of the enzyme
The partial purification of the crude enzyme extract involves a fractional precipitation

of the proteins by ammonium sulfate (NH4)2SO4 then a dialysis with a semi-permeable.

2.3.1 Ammonium sulfate precipitation
It was found that the proteins present in a solution can be precipitate with a certain

range of salt concentration depending on the nature of the protein to be extracted.

It is one of the fastest methods to recover proteins in concentrated form while retaining

their biological activities (Walsh and Headon, 1994)

Operating mode

To determine the best ammonium sulfate concentration for the purification of protease

three set of solutions were prepared at different saturation

At 60 % saturation (10.83 g (NH4)2SO4 / 30 mL crude enzyme)

At 70 % saturation (13.08 g (NH4)2SO4 / 30 mL crude enzyme)

and at 80 % saturation (15.48 g (NH4)2SO4 / 30 mL crude enzyme)

Each set was stirred slowly overnight at 4 C° until homogeneous, afterwards each was

centrifuged at 10000 rpm for 30 min.

After the centrifugation process is complete, the supernatant and pellets are separated

and the enzyme activity level is measured using Anson method while the protein content is

measured by Lowry method.

2.3.2 Dialysis
Principle

Dialysis is a separation method based on the movement of molecules from the more

concentrated medium to the less concentrated medium through a semi-permeable membrane.

Only molecules with dimensions smaller than the diameter of the membrane pores can diffuse
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to both sides and reach equilibrium with the total volume of solution in the system, such as

the volume of solvents, salts, and small metabolites. In contrast, macromolecules such as

proteins are non-diffusible and they will remain in the same membrane compartment as at the

start of the experiment (Rapalli and Singhvi, 2021; Soria et al., 2012).

Operating mode

The precipitated proteins suspended in a reduced volume of sodium citrate buffer (0.1

M; pH 5) are dialyzed against the same buffer, using a semi-permeable membrane under

gentle stirring at 4°C for 24 h.

2.3.3 Lyoufilisation
Principe

Lyophilisation is a process commonly used in the food industry, biological samples

preservation, and pharmaceutical applications, being a dehydrating technique suitable for

heat-sensitive samples. This consists of the removal of water from a sample, either being from

a solution or materials. During the process, the water is removed from previously frozen

samples directly into vapor by sublimation, in decreased temperature and pressure conditions.

In this case this principle is used to rid the crude extract of any unnecessary liquids like

the buffer with the goal of raising the protein concentration

Operation mode

The equipment used is Labconco FreeZone 1 liter Freeze Dryer

It was loaded with three batches of three Petri dishes each filled with 5mL of crude

extract

The lyoufilisation time of each batch was 6 hours After which the remains on the dishes

are collected and stored in an Eppendorf tube (Figure 14).

Figure 14: Labconco FreeZone 1 litre freeze dryer.



Materials and methods

Page | 32

2.4 SDS PAGE Electrophoresis
The electrophoresis gel technique under denaturing conditions (Sodium Dodecyl Sulfate

polyacrylamide gel electrophoresis or SDS page) is used to determine the number of protein

subunits and their molar mass(Laemmli, 1970).

The protein sample is treated with a reducing agent (β-mercaptoethanol) which breaks

down the disulfide bounds and an anionic detergent (SDS) which denatures proteins and gives

them an envelope of negative charges(Hames et al., 2000).

All protein fragments are separated according to their molecular weight, determined using

markers.

This technique makes it possible to determine the molecular weight of the subunits

forming a protein.

The samples are fractionated by 10% polyacrylamide gel electrophoresis.

The samples used were

The crude extract

The partially purified extract at 80%, 70%, 60% saturation

The partially purified extract by lyoufilisation

3. Applications using protease

3.1 Determination of milk-clotting activity
Milk-clotting activity was determined according to the methods described by (Arima et

al., 2000)with slight modifications. The substrate 1 (10% milk in 0.01 M CaCl2) and the

substrate 2 (milk) was prepared and the pH was adjusted to 6.5. The substrate was incubated

for 5 min at 37°C.

3 tests were conducted:

test 1: tube1contain :2 ml substrate +1 0.2 ml Enzyme extract.

tube 2 contain :2 ml substrate 1.

test 2: tube1contain :6 ml substrate 1 + 0.6 ml Enzyme extract.

tube 2 contain :6 ml substrate 1 + 1.8 ml enzyme extract.

tube 3 contain: 6 ml substrate 1

test 3: tube1 contain :6 ml substrate 2 + 0.6 ml Enzyme extract.

tube 2 contain :6 ml substrate 2 + 1.8 ml enzyme extract.

tube 3 contain: 6 ml substrate 2.
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the test tubes were incubated at 37°C, and being manually rotated from time to time. The milk
clotting unit was defined as the amount of enzyme that coagulates 10 ml of the substrate in 40
minutes (Mohamed and Babiker, 2014).

MCA (U/ml) = (2400∕ clotting time (sec)) × Dilution factor.

MCA: Milk Clotting Activity.

3.2 Detergent
The efficacy of the crude protease in stain removal was assessed using 4 pieces of white

cloth (5 × 5 cm) stained separately with a proteinaceous mixture of eggs and chocolate and

dried at 37 °C.

The stained clothes were placed in separate trays and the set-up was as follows:

Set 1 (control): 100 ml distilled water + the stained cloth.

Set 2: 100 ml distilled water + 1 ml ISIS detergent (7 mg/ml) + the stained cloth.

Set 3: 100 ml distilled water + 2 ml crude extract + the stained cloth.

Set 4: 100 ml distilled water + 1ml ISIS detergent + 2 ml crude extract+ the stained

cloth.

All experimental sets were incubated at 45 °C for 30 min.

After the incubation, the clothes were rinsed with water without rubbing.

The stain removal activity was visually examined and compared after the cloth was

dried. (Figure 15).

Figure 15: Cloth after adding the mixture.

3.3 Recovery of silver from waste X-ray photographic film
Two pieces of used X-ray films (2 x 2 cm) were washed with distilled water and wiped

with cotton impregnated with ethanol then dried in an oven at 40 °C for 30 min

One film was submerged in 50 ml of crude extract and put in the oven at 40 °C

The other film was put under the same condition and used for a negative control, with

50 ml distilled water instead of enzyme solution.
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The film was checked for decomposition of gelatinous coating after different

incubation periods (Figure 16).

Figure 16: Used x-ray films submerged in crude extract and distilled water.

3.4 Action of protease on gluten
Principle of gluten dosage

The dosage of gluten is based on its solubility in salt water and on its agglomeration

during mixing under a stream of water (Marchetti, 2012).

Operating mode

3 experiments were carried out to extract gluten: flour, wheat flour and wheat grains

 Weigh 25g of flour, then pour it into a container to which you add

about 12 to 13 mL of distilled water. On the other hand, weigh 25 g of flour and

add about 12 to 13 mL of enzymatic extract.

 Weigh out 25 grams of wheat flour, and pour it into a bowl to which

you add about 12 to 13 ml of distilled water. On the other hand, weigh 25g of

wheat flour and add about 12 to 13ml of enzymatic extract.

 Weigh 25 grams of wheat grains, mix in 50 ml of enzymatic extract,

and then place in an incubator set at 60 degrees for 24 hours. After drying out, the

mixture is crushed to make flour, which is then combined with 12 to 13 ml of

distilled water. On the other hand, measure out 25 grams of wheat flour and add it

to a bowl with 12 to 13 ml of distilled water.

after two to three minutes of kneading, and 15 minutes of rest, this dough is kneaded in

the hand to transform it into a homogeneous dough that stretches perfectly. This dough is

kneaded under a stream of water by compressing it slightly or by placing it above a sieve

intended to retain the fragments of gluten that are entrained and recover them (the starch is

therefore eliminated while the gluten gradually fuses to itself). When the gluten forms a
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homogeneous mass, the water flow is increased to carry out the washing until transparent

washing water is obtained. The gluten is then wrung out by compressing it strongly several

times between the palms of the hands. Finally, the wet gluten is quickly weighed.

Dry gluten is obtained by drying wet gluten at a temperature of102°C, until a constant weight

is obtained after approximately18hours.

We do the same process for wheat flour and wheat grains.

Expression of results

Wet gluten (GW) is expressed in grams per 100g of flour by:

GW=100(Mw /25)

Dry gluten (GD) is expressed in grams per 100g of flour by:

GD= 100(Md/25)
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4. Strain characteristics
Macroscopic characteristics

After incubation for 48 hours at 30°C on YPGA solid media, the results are shown in

(Figure17), it appears that the P3 strain has colonies of a round form, smooth surface, creamy,

shiny and white in color.

Figure 17: Cultivation of the strain Clavispora lusitaniae .

Microscopic characteristics

Their size ranges from 4 to 10 µm, many cells have buds attached to them indicating asexual
reproduction through budding (Figure 18).

Figure 18: Clavispora lusitaniae under a microscope.

5. Protease production
The production of the protease from the strain Clavispora lusitaniae was carried out in SSF on

a medium consisting of a mixture of bread and tomatoes leftovers, has been successful with

the crude extract containing 75.6 ug/ml with enzymatic activity of 15960.6 UI/ml.
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5.1 Extract partial purification
Ammonium sulfate and dialysis

The crude enzymatic extract from Clavispora lusitaniae characterized by proteolytic activity
of 15960.6UI/ml was subjected to ammonium sulfate precipitation at different saturation

(60%, 70%, 80%) then dialysis, in each stage of this partial purification protein concentration

and enzymatic activity was measured, all results found have been summed up in the following

(table6).

Table 6: Purification Table.

stage volume Enzyme
activity

Protein
concentration

Total
activity

Total
protein

Specific
activity Purity Yield

Crude
extract 30 15960.6 75.6 478818 2268 211.12 1 100

Ammonium sulfate precipitation
60% 4 411.76 18.66 520.20 74.64 22.066 0.104 0.108
70% 4.5 1735.2 17.27 7808.4 77.715 100.47 0.456 1.63
80% 4.25 12600 42.6 53550 181.05 295.77 1.40 11.18

Dialysis
60% 2 209 12.5 4.18 25 16.72 0.76 0.09
70% 2.5 535.2 11.82 1338 29.55 45.28 0.45 0.28
80% 2.6 11400 25.2 29640 65.52 452.4 1.53 6.19

According to what was found the best saturation rate for ammonium sulfate precipitation of

protease is 80% as it gives the highest proteolytic activity of 29640UI/ml and 6.19% yield,

this value is slightly smaller than that studied for some protease from other yeast , such as

Pichia anomala CO-1 7.2 % yield (Kim, 2019c).

5.2 SDS-PAGE
SDS-PAGE analysis of the samples from the extract resulted in the appearances of multiple

bands indicating the presence of multiple enzymes with a molecular weight that ranges

between 10 kDa to 28 kDa (Figure 19) ,this value is smaller than that studied for

someprotease from other yeast ,Pichia anomala CO-1 30 KDa (Kim, 2019c),Aureobasidium
pullulans 32 KDa (Ma et al., 2007b).

Given how far the extract migrated it can be concluded that the time given for the

procedure should be shortened.
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The presence of protease can be further investigated by relying on its specific enzymatic

activity using zymography technique.

Figure 19: SDS-PAGE analysis.

6. Applications

6.1 Determination of milk-clotting activity:
After 4,8, 24 hours of incubation our enzyme showed no apparent coagulant activity.

It may be that the protease enzyme produced by Clavispora lusitaniae has no milk clotting
activity or it is very small it doesn't make a difference

The conditions of the experiment are not favorable as milk clotting activity can be affected by

many factors, the foremost being pH and temperature. A study of the effects of pH and

temperature on the milk-clotting activity and proteolytic activity of the proteases showed that

they exhibited good pH stability from pH 5.5 to 7.5 and good thermal stability at temperatures

from 50 to 70°C (Luo et al., 2018).

The incubation time is not sufficient

milk clotting activity could be due to differences in the composition of substrates, mineral

supplements, incubation time, and/or moisture content used in SSF (Mamo et al., 2020).

With this, we can assume that the protease produced by Clavispora lusitaniae is not suitable

for cheese industry but further research is required to prove this.
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6.2 Results of silver
After two hours, small black particles were observed floating in the crude extract while

the sides of the film turned more transparent and after 24 h, the gelatin layer was completely

removed leaving the polyester film clear (Figure 20).

From the results obtained in this attempt, it can be deduced that the protease from Clavispora

lusitaniae was effective in breaking down the gelatin making it potentially a good alternative
to harmful chemicals in the process of recovering silver from used X-ray films.

The study of Pathak and Deshmukh (Pathak and Deshmukh, 2012) showcased similar results

for it took them 24h for the gelatin layer to break and for the silver to be extracted while Foda

took 1h to do so (Foda and Ali, 2013), some even managed to finish the treatment for as short

as 3 min like Seid or 15 min like Choudhary (Choudhary and Vishwavidylaya, 2013; Seid,

2011)

Figure 20: X-ray film put in the ezyme extract after 24 h.

6.3 Detergent results
One of the most important commercial applications of protease is its use in the

detergent industry; hence, the stain removal capacity of protease is assessed visually using

eggs and chocolate-stained fabrics.

(Figure 21) shows that the presence of crude enzyme with the commercial detergent

ISIS showed good stain removal capacity; this suggests the combination (enzyme -detergent)

seems to enhance the performance of the detergent, which can make it a great supplement

ingredient to be put alongside regular chemical detergents.

These results go in hand with other studies on different types of proteases as the test

conducted of their stability and compatibility with various commercial detergents support

their usage as additives, this was the case with proteases from Aspergillus terreus
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(Ali U F,2008) and Bacillus circulans (Jaswal, R and Kocher, G, 2006)and protease

from B. licheniformis by Jyothi Bezawada, (Bezawada, 2010).

Distilled water DW + ISIS DW + crude enzyme DW + ISIS + CE

Figure 21: Results of the detergent application.

6.4 Action of protease on gluten
The results of the experiment show that overall, the weight of gluten is less in the dough

that has been treated with the enzyme extract compared to the weight of gluten in the dough

that has been kneaded with distilled water.

The enzyme extract degrade respectively 0.28 %, 1%, 2.01% of gluten of

flour (Triticum aestivum),wheat flour (Triticum durum),wheat grains (Triticum durum)
(Figure 22) (Figure 23) (Figure 24).

.

Figure 22: Percentage of gluten in flour after and before treatment by extract enzyme.
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Figure 23: Percentage of gluten in wheat flour after and before treatment by extract enzyme.

Figure 24: Percentage of gluten in wheat grains after and before treatment by extract enzyme.

The proteolytic activity of strain Clavispora lusitaniae presented an interesting capacity

to degrade gluten.

.
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The objective of our study to produce protease of the strain Clavispora lusitaniae in

optimal conditions, and test the properties of crude proteases in the field of industry and

biotechnology.

In the first part, the production of protease by the yeast Clavispora lusitaniae by solid

state fermentation (SSF) and the use of tomato waste and leftover bread as substrates were

studied under optimal conditions of 0.5×106 of inoculum, 96.82% humidity, 112 hours of

incubation, 40 °C temperature, and pH 5.

After fermentation and extraction of the enzyme, the proteolytic activity was

measured15960.6 UI/ml and the concentration is 75.6ug/ml.

After partial purification of the protease by several techniques: Precipitation by

ammonium sulphate, Dialysis, electrophoresis and lyophilization.

Ammonium sulphate precipitation indicates that the majority of the proteins were

precipitated in 80% as it gives the highest proteolytic activity of 29640UI and 6.19% yield.

Electrophoresis indicates an appearance of multiple bands indicating the presence of

multiple proteins with a molecular weight that ranges between 10 kDa to 28 kDa.

In the second part, four important applications were discussed, to understand the uses of

protease.

The protease enzyme showed an interesting effect on gluten, which has been shown to

degrade respectively 0.28 %, 1%, and 2.01% of gluten in flour (Triticum aestivum), wheat

flour (Triticum durum), wheat grains (Triticum durum). It also played a good role in the field
of silver recovery, and the possibility of using it in the field of commercial detergent industry.

For the experiment of milk clotting activity our enzyme showed no coagulant activity so we

can’t use it in cheese industry.

Therefore, we conclude that our strain produces proteases with a good property

(proteolytic activity), which is important in different fields of industry and biotechnology.

The objectives set in this work are achieved, but they have opened a path of research

towards other perspectives such as:

-Using zymography technique.

-Total purification.
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Appendix 1

Yeast Extract Peptone Glucose Agar (YPGA)

2% agar medium dissolve in 1 liter of distilled water:

20 g glucose.

10 g of peptone.

5 g of yeast extract.

By shaking the mixture on a stirrer until complete dissolve of all the ingredients. After adding 20 g of

agar (or 4 g for each flask of 200 ml) The medium is autoclaved, the distribution of the culture medium in

Petri dishes is performed in a sterile area in front of a Bunsen burner to avoid contamination of the

environment.

Preparing the buffer solution

Sodium Citrate Buffer (pH)

 Solution A: citric acid C6H8O7 (0,1M).

 Solution B: the disodium Na2HPO4 (0,2M).

The pH is determined by the pH meter.
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Appendix 2
Protein assay

Solutions preparation

 Solution A: 2% of Na₂CO3 in 0.1 N NaOH (0.4% in distilled water)
 Solution B: 2% tartrate in distilled water
 Solution C: 1% CuSO4 (5H2O) in distilled water
 Solution D: 0.5 mL C + 0.5 mL B + 50 mL A (must be prepared right before utilization)
 Folin-Ciocalteu diluted three times (one volume of folin with two volumes of distilled water)
 BSA stock solution of 500 µg/ml for the standard curve

The assays protocol (Table 7):

Table 7: Protein assay protocol.

Standard curve preparation (BSA)

The standard range is established from a BSA stock solution with a concentration between 0 and 500
µg/ml. The reaction mixture of different concentrations is prepared according to the same protocol
described above and as indicated in the following (Table 8):

Table 8: Standard curve preparation protocol.

0.5 ml enzymatic extract (diluted 1:10 in distilled water)

2.5 ml of solution D

Agitation and Incubation in an ambient temperature for 10 minutes

0.25 ml of folin-ciocalteu diluted (1:3) at 50%

Agitation and Incubation in an ambient temperature in the dark for 30 minutes

Read the absorbance at 650 nm

Tube Blanc 1 2 3 4 5

BSA (ml) 0 0,2 0 ,4 0,6 0,8 1

Distilled water (ml) 1 0,8 0,6 0,4 0,2 0

Solution D (ml) 5 5 5 5 5 5

Agitation and Incubation in an ambient temperature for 10 minutes

Folin (ml) 0,5 0,5 0,5 0,5 0,5 0,5

Agitation and Incubation in an ambient temperature for 30 minutes

Read absorbance at 650 nm
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Figure 25: BSA standard curve.

Dosageof Proteolytic activity:

 Necessary solutions:

 2.5% casein solution dissolved in 0.02M sodium citrate.

 Citrate / sodium buffer, (0.1M / 0.2 M), pH =5.

 4% TCA solution.

 2% Na₂CO₃ solution in 0.1N NaOH.

 Folin-Ciocalteu's reagent diluted to 50%.

 Tyrosine stock solution with a concentration of 100µg/ml (0.01%) dissolved in TCA 4%
trichloroacetic acid solution for calibration.

The dosage of protein activity: is carried out in two phases:

Phase 01: The Enzymatic Reaction: Preparation of the reaction mixture.(Table 9):

Table 9: Protocol of phase 1 of enzyme activity assay.

 0.375 ml of citrate / sodium buffer (0.1 M / 0.2 M), pH = 5.
 0.25ml of the enzymatic extract thawed just before the assay and diluted (1/10th).

 o 0.625ml 2.5% casein substrate dissolved in sodium citrate buffer (0.02M).

Shaking and Incubation in the water bath at 40C° for 30 minutes.

 o 2.5 ml 4% TCA, to stop the reaction.

Shaking and standing for 10 minutes to allow complete precipitation of unhydrolyzed casein.

Filter on Whatman paper

NB: The blanks are prepared in the same way as the sample except that here the TCA is added before

the substrate and without incubation in the water bath.

y =2.1653x

R2 =0.9998
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Phase 02: Activity colorimetric dosage: After filtration, the non-protein nitrogen compounds that are in the

soluble phase are dosed. (Table 10):

Table 10: Protocol of phase 2 of enzyme activity assay.

2,5 ml of Na2CO3 2% in NaOH 0.1N.

0.5 ml of filter.

0.25 ml Folin diluted 1/4 in distilled water.

Shake and incubate at room temperature, in the dark for 30 minutes.

Absorbance reading at 750 nm.

Preparation of the curve:

The standard range is established from a tyrosine solution, concentrations are

between 0 and 100 μg/ml according to the following (Table 11):

Table 11: Protocol of the preparation for TCA standard curve.

Concentrations of dilutions (μg/ml) 0 20 40 60 80 100

Solution of Tyrosine (ml) 0 0.1 0.2 0.3 0.4 0.5

TCA (ml) 0.5 0.4 0.3 0.2 0.1 0

Na₂CO₃(ml) 2.5 2.5 2.5 2.5 2.5 2.5

Shake and incubate for 10 minutes at room temperature.

Diluted reactive ½ (ml) 0.25 0.25 0.25 0.25 0.25 0.25

Shake and incubate at room temperature for 30 minutes.

Absorbance reading at 750 nm.
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Figure 26: TCA standard curve.
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ملخص

عند Clavispora lusitaniae محلية اللة من محلييا البروتياز إنزيم إنتاج هو درااتنا من الهدف
الصناعة مجال في الخام البروتياز خصائص واختبار مكلفة، غير ركائز بااتخدام المثلى الظروف

الحيوية. والتكنولوجيا

خليط على الصلب التخمير طريق عن Clavispora lusitaniae CBS 6936 T البروتيز إنتاج تم
قدره للبروتين تحلل نشاط المثل النتاج أعطى الطماطم. نفايات من ٪ و50 الخبز بقايا من ٪ 50 من

مل. / ميكروجرام 75.6 وتركيز مل / دولية وحدة 15960.6

تم التوالي) على 11.18 و 1.40) مردود وأفضل تنقية أفضل أن إلى المونيوم كبريتات ترايب يشير
.٪80 ترايب عند الحصول

جزيئي بوزن يروتينات عدة وجود إلى تشير شرائط عدة ظهور إلى الكهربائية الهجرة نتائج تشير
دالتون. كيلو 28 و دالتون كيلو 10 بين يتراوح

التالية: التجارب في البروتياز فعالية إثبات تم

يجعله الغلوتين على تأثيره الجيلتين. من طبقتين بفصل قام حيث التصوير، ورق من الفضة تدوير إعادة
جيد كعنصر أهميته توضيح تم الهضمية. الضطرابات مرضى لعلج الغلوتين منخفض قمح لنتاج مناابيا

التجارية. المنظفات تصنيع في

التطبيق المونيوم، كبريتات ترايب الكهربائي، الرحلن النتاج،البروتياز،الخميرة، المفتاحية: الكلمات
Clavispora lusitaniae CBS 6936 T
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Résumé :
L'objectif de notre étude est de produire localement l'enzyme protéase à partir d'une

souche locale Clavispora lusitaniae dans des conditions optimales en utilisant des substrats

peu coûteux, et de tester les propriétés des protéases brutes dans le domaine de l'industrie et

des biotechnologies.

La production de la protéase de Clavispora lusitaniae CBS 6936 T a été réalisée en

fermentation solide sur un mélange de 50% restes de pain et 50% déchets de tomate. La

production optimisée a donné une activité protéolytique de 15960,6 UI/ml et une

concentration de 75,6 µg/ml.

La précipitation au sulfate d'ammonium indique que le meilleur degré de purification et

le meilleur rendement (1.40 et 11,18, respectivement) ont été obtenus à 80%.

L'électrophorèse indique l'apparition de plusieurs bandes indiquant la présence de

plusieurs enzymes avec un poids moléculaire compris entre 10 kDa et 28 kDa.

L'efficacité de la protéase a été prouvée dans les expériences suivantes :

Le recyclage de l'argent du papier photographique, où il a séparé les deux couches de

gélatine. Son effet sur le gluten, le rend approprié pour produire du blé à faible teneur en

gluten pour le traitement des patients atteints de troubles cœliaques. Son importance en tant

que bon ingrédient dans la fabrication de lessive commerciale a été montrée.

Mots clés : production, protéase, levure, Clavispora lusitaniae CBS 6936 T, électrophorèse,
précipitation au sulfate d'ammonium, application.
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The aim of our study is to locally produce the protease enzyme from a local Clavispora
lusitaniae strain under optimal conditions using inexpensive substrates and to test the
properties of crude proteases in the field of industry and biotechnology.

The production of Clavispora lusitaniae CBS 6936 T protease was carried out in solid

fermentation on a mixture of 50% bread scraps and 50% tomato waste. Optimized

production gave a proteolytic activity of 15960.6 IU/ml and a concentration of 75.6 ug/ml.

Ammonium sulfate precipitation indicated that the best degree of purification and yield

(1.40 and 11.18, respectively) were obtained at 80%.

Electrophoresis showed the appearance of several bands indicating the presence of

several enzymes with molecular weights ranging from 10 kDa to 28 kDa.

Protease efficiency was demonstrated in the following experiments:

Recycling silver from photographic paper, where it separated the two gelatin layers. Its

effect on gluten makes it suitable for producing low-gluten wheat for the treatment of celiac

patients. Its importance as a good ingredient in the manufacture of commercial laundry

detergents has also been demonstrated.

Key words: production, protease, yeast, Clavispora lusitaniae strain CBS 6936 T, Electrophoresis,
Ammonium sulphate precipitation, application.
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